Article ID Journal Published Year Pages File Type
6810 Biomaterials 2012 11 Pages PDF
Abstract

Three poly(caprolactone)-modified Pluronic P105 polymers (P105/PCLs) were synthesized using commercially available ε-caprolactone monomers and Pluronic P105 copolymers. The chemical structures, compositions and molecular weights of the P105/PCLs were confirmed by FT-IR, 1H NMR and GPC measurements. Three paclitaxel (PTX)-loaded P105/PCL polymeric micelles were then prepared, and they showed average diameters in the range of 30–150 nm, drug-loading coefficients of 0.15%–5.43%, and encapsulation ratios of 2.1%–76.53%. The in vitro cytotoxicity assay demonstrated that three PTX-loaded P105/PCL micelles were able to sensitize the resistant SKOV-3/PTX tumor cells. The PTX-loaded P105/PCL50 micelle was then selected for an in vivo antitumor efficacy study. The tumor volumes in nude mice bearing s.c. resistant SKOV-3/PTX carcinoma treated with this micellar PTX were significantly less than the control group treated with Taxol. It was demonstrated that three PCL-modified P105 monomers and micelles inhibited P-gP efflux activity in the resistant SKOV-3/PTX cells via at least three intracellular events: 1) inhibition of ATPase of P-gP, 2) decrease of membrane microviscosity and 3) a loss of mitochondrial membrane potential and subsequent decrease of ATP levels at the concentration of monomers (0.001%) and/or micelles (0.01–1.0%). Considering other favorable characteristics, such as sustained PTX release in vitro, long-circulating time in vivo and increased PTX concentration in the tissues of ovaries and uterus in mice, the PCL-modified Pluronic P105 polymeric micelle system could have important clinical implications for delivery of paclitaxel and treatment of the resistant ovarian tumors.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , ,