Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6823553 | Schizophrenia Research | 2015 | 8 Pages |
Abstract
Deficits in both resting alpha-range (8-12Â Hz) electroencephalogram (EEG) activity and steady state evoked potential (SSVEP) responses have been reported in schizophrenia. However, the topographic specificity of these effects, the relationship between resting EEG and SSVEP, as well as the impact of antipsychotic medication on these effects, have not been clearly delineated. The present study sought to address these questions with 256 channel high-density EEG recordings in a group of 13 schizophrenia patients, 13 healthy controls, and 10 non-schizophrenia patients with psychiatric diagnoses currently taking antipsychotic medication. At rest, the schizophrenia group demonstrated decreased alpha EEG power in frontal and occipital areas relative to healthy controls. With SSVEP stimulation centered in the alpha band (10Â Hz), but not with stimulation above (15Â Hz) or below (7Â Hz) this range, the occipital deficit in alpha power was partially reverted. However, the frontal deficit persisted and contributed to a significantly reduced topographic relationship between occipital and frontal alpha activity for resting EEG and 10Â Hz SSVEP alpha power in schizophrenia patients. No significant differences were observed between healthy and medicated controls or between medicated controls and schizophrenia. These findings suggest a potential intrinsic deficit in frontal eyes-closed EEG alpha oscillations in schizophrenia, whereby potent visual stimulation centered in that frequency range results in an increase in the occipital alpha power of these patients, which however does not extend to frontal regions. Future research to evaluate the cortical and subcortical mechanisms of these effects is warranted.
Related Topics
Life Sciences
Neuroscience
Behavioral Neuroscience
Authors
Michael R. Goldstein, Michael J. Peterson, Joseph L. Sanguinetti, Giulio Tononi, Fabio Ferrarelli,