Article ID Journal Published Year Pages File Type
6853044 Artificial Intelligence 2018 37 Pages PDF
Abstract
Our key observation is that, given such a star topology, the leaves are conditionally independent given the center, in the sense that, given a fixed path of transitions by the center, the possible center-compliant paths are independent across the leaves. Our decoupled search hence branches over center transitions only, and maintains the center-compliant paths for each leaf separately. As we show, this method has exponential separations to all previous search reduction techniques, i.e., examples where it results in exponentially less effort. One can, in principle, prune duplicates in a way so that the decoupled state space can never be larger than the original one. Standard search algorithms remain applicable using simple transformations. Our experiments exhibit large improvements on standard AI planning benchmarks with a pronounced star topology.1
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,