Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6853361 | Artificial Intelligence in Medicine | 2018 | 11 Pages |
Abstract
In this paper, we focus on building a new computational model that not only introduces easy ways to extract features from protein sequences but also optimizes classification of trans-Golgi and cis-Golgi proteins. After feature extraction, we have employed Random Forest (RF) model to rank the features based on the importance score obtained from it. After selecting the top ranked features, we have applied Support Vector Machine (SVM) to classify the sub-Golgi proteins. We have trained regression model as well as classification model and found the former to be superior. The model shows improved performance over all previous methods. As the benchmark dataset is significantly imbalanced, we have applied Synthetic Minority Over-sampling Technique (SMOTE) to the dataset to make it balanced and have conducted experiments on both versions. Our method, namely, identification of sub-Golgi Protein Types (isGPT), achieves accuracy values of 95.4%, 95.9% and 95.3% for 10-fold cross-validation test, jackknife test and independent test respectively. According to different performance metrics, isGPT performs better than state-of-the-art techniques. The source code of isGPT, along with relevant dataset and detailed experimental results, can be found at https://github.com/srautonu/isGPT.
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
M. Saifur Rahman, Md. Khaledur Rahman, M. Kaykobad, M. Sohel Rahman,