Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6853971 | Data & Knowledge Engineering | 2017 | 29 Pages |
Abstract
The complexity of Business Intelligence activities has driven the proposal of several approaches for the effective modeling of Extract-Transform-Load (ETL) processes, based on the conceptual abstraction of their operations. Apart from fostering automation and maintainability, such modeling also provides the building blocks to identify and represent frequently recurring patterns. Despite some existing work on classifying ETL components and functionality archetypes, the issue of systematically mining such patterns and their connection to quality attributes such as performance has not yet been addressed. In this work, we propose a methodology for the identification of ETL structural patterns. We logically model the ETL workflows using labeled graphs and employ graph algorithms to identify candidate patterns and to recognize them on different workflows. We showcase our approach through a use case that is applied on implemented ETL processes from the TPC-DI specification and we present mined ETL patterns. Decomposing ETL processes to identified patterns, our approach provides a stepping stone for the automatic translation of ETL logical models to their conceptual representation and to generate fine-grained cost models at the granularity level of patterns.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Vasileios Theodorou, Alberto Abelló, Maik Thiele, Wolfgang Lehner,