Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6854128 | Engineering Applications of Artificial Intelligence | 2018 | 17 Pages |
Abstract
The solution of the inverse kinematics problem is an essential capability for robotic manipulators. This capability is used to solve tasks such as path planning, control of manipulators, object grasping, etc. In this paper, we present an approach for solving the inverse kinematics of robot arm manipulators using a soft computing approach. Given a desired end effector pose, the proposed approach is able to solve both the position and orientation for the inverse kinematic problem. In addition, the proposed approach avoids singularities configurations, since, it is based on the forward kinematics equations. We present simulations and experiments, where a comparative study among some selected soft computing algorithms is realized. The simulations and experiments illustrate the effectiveness of the proposed approach.
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Carlos Lopez-Franco, Jesus Hernandez-Barragan, Alma Y. Alanis, Nancy Arana-Daniel,