Article ID Journal Published Year Pages File Type
6854468 Engineering Applications of Artificial Intelligence 2015 17 Pages PDF
Abstract
Recently, mobile devices have dramatically improved their communications and processing capabilities, so enabling the possibility of embedding knowledge-based decision support components within Remote Health Monitoring (RHM) applications for the ubiquitous and seamless management of chronic patients. According to these considerations, this paper presents a light-weight, rule-based, reasoning system, purposely designed and optimized to build knowledge-based Decision Support Systems efficiently embeddable in mobile devices. The key issues of such a system are both a domain-independent reasoning algorithm and knowledge representation capabilities, specifically thought for both computation intensive and real-time RHM scenarios. The performance evaluation of the proposed system has been arranged according to the Taguchi's experimental design and performed directly on a mobile device in order to quantitatively assess its effectiveness in terms of memory usage and response time. Moreover, a case study has been arranged in order to evaluate the effectiveness of the proposed system within a real RHM application for monitoring cardiovascular diseases. The evaluation results show that the system offers an innovative and efficient tool to build mobile DSSs for healthcare applications where real-time performance or computation intensive demands have to be met.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,