Article ID Journal Published Year Pages File Type
6854674 Expert Systems with Applications 2018 40 Pages PDF
Abstract
To ensure the rational allocation of software testing resources and reduce costs, software defect prediction has drawn notable attention to many “white-box” and “black-box” classification algorithms. Although there have been lots of studies on using software product metrics to identify defect-prone modules, defect prediction algorithms are still worth exploring. For instance, it is not easy to directly implement the Apriori algorithm to classify defect-prone modules across a skewed dataset. Therefore, we propose a novel supervised approach for software defect prediction based on atomic class-association rule mining (ACAR). It holds the characteristics of only one feature of the antecedent and a unique class label of the consequent, which is a specific kind of association rules that explores the relationship between attributes and categories. It holds the characteristics of only one feature of the antecedent and a unique class label of the consequent, which is a specific kind of association rules that explores the relationship between attributes and categories. Such association patterns can provide meaningful knowledge that can be easily understood by software engineers. A new software defect prediction model infrastructure based on association rules is employed to improve the prediction of defect-prone modules, which is divided into data preprocessing, rule model building and performance evaluation. Moreover, ACAR can achieve a satisfactory classification performance compared with other seven benchmark learners (the extension of classification based on associations (CBA2), Support Vector Machine, Naive Bayesian, Decision Tree, OneR, K-nearest Neighbors and RIPPER) on NASA MDP and PROMISE datasets. In light of software defect associative prediction, a comparative experiment between ACAR and CBA2 is discussed in details. It is demonstrated that ACAR is better than CBA2 in terms of AUC, G-mean, Balance, and understandability. In addition, the average AUC of ACAR is increased by 2.9% compared with CBA2, which can reach 81.1%.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , ,