Article ID Journal Published Year Pages File Type
6854693 Expert Systems with Applications 2018 49 Pages PDF
Abstract
Results: Experimental results revealed sensitivity, specificity, accuracy, positive predictive rate, negative predictive rate, and area under the curve of 97.6%, 94.4%, 96.1%, 92.9%, 98.8% and 0.96 respectively using the SVM classifier. Finally, MATLAB based software tool referred to as CADFES was introduced for automated classification of focal and non-focal seizures. Comparison results ensure that proposed study is superior to existing methods. Hence, it is expected to perform better at the hospitals for automated classification of focal epileptic seizures in real-time.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,