Article ID Journal Published Year Pages File Type
6855338 Expert Systems with Applications 2018 25 Pages PDF
Abstract
This paper learns the route choice behavior of passengers from Auto Fare Collection, timetable, and train loading data using a method combined with Bayesian inference and Metropolis-Hasting sampling. First, the influential factors of route choice such as in-vehicle travel time, transfer time, and in-vehicle crowding are given. Next, formulations are established based on AFC, timetable and train loading data, which are merged into a logit model of route choice behavior of subway passengers. Next, an algorithm integrating Bayesian inference and Metropolis-Hasting sampling is designed to calibrate parameters of the logit model. Finally, a case study of Beijing subway is applied to verify the validity of the model and algorithm. A detailed discussion shows that in-vehicle crowding plays a crucial role in passenger route choice behavior.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , ,