Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6855598 | Expert Systems with Applications | 2016 | 13 Pages |
Abstract
The popularity of Web Search Engines (WSEs) enables them to generate a lot of data in form of query logs. These files contain all search queries submitted by users. Economical benefits could be earned by means of selling or releasing those logs to third parties. Nevertheless, this data potentially expose sensitive user information. Removing direct identifiers is not sufficient to preserve the privacy of the users. Some existing privacy-preserving approaches use log batch processing but, as logs are generated and consumed in a real-time environment, a continuous anonymization process would be more convenient. In this way, in this paper we propose: (i) a new method to anonymize query logs, based on k-anonymity; and (ii) some de-anonymization tools to determine possible privacy problems, in case that an attacker gains access to the anonymized query logs. This approach preserves the original user interests, but spreads possible semi-identifier information over many users, preventing linkage attacks. To assess its performance, all the proposed algorithms are implemented and an extensive set of experiments are conducted using real data.
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
David Pà mies-Estrems, Jordi Castellà -Roca, Alexandre Viejo,