Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6856526 | Information Sciences | 2018 | 17 Pages |
Abstract
Naive Bayes (NB) is a simple but highly practical classifier, with a wide range of applications including spam filters, cancer diagnosis and face recognition, to name a few examples only. Consider a situation where a user requests a classification service from a NB classifier server, both the user and the server do not want to reveal their private data to each other. This paper focuses on constructing a privacy-preserving NB classifier that is resistant to an easy-to-perform, but difficult-to-detect attack, which we call the substitution-then-comparison (STC) attack. Without resorting to fully homomorphic encryptions, which has a high computational overhead, we propose a scheme which avoids information leakage under the STC attack. Our key technique involves the use of a “double-blinding” technique, and we show how to combine it with additively homomorphic encryptions and oblivious transfer to hide both parties' privacy. Furthermore, a completed evaluation shows that the construction is highly practical - most of the computations are in the server's offline phase, and the overhead of online computation and communication is small for both parties.
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Chong-zhi Gao, Qiong Cheng, Pei He, Willy Susilo, Jin Li,