Article ID Journal Published Year Pages File Type
6856527 Information Sciences 2018 16 Pages PDF
Abstract
For meeting diverse requirements of data analysis, the machine learning classifier has been provided as a tool to evaluate data in many applications. Due to privacy concerns of preventing disclosing sensitive information, data owners often suppress their data for an untrusted trainer to train a classifier. Some existing work proposed privacy-preserving solutions for learning algorithms, which allow a trainer to build a classifier over the data from a single owner. However, they cannot be directly used in the multi-owner setting where each owner is not totally trusted for each other. In this paper, we propose a novel privacy-preserving Naive Bayes learning scheme with multiple data sources. The proposed scheme enables a trainer to train a Naive Bayes classifier over the dataset provided jointly by different data owners, without the help of a trusted curator. The training result can achieve ϵ-differential privacy while the training will not break the privacy of each owner. We implement the prototype of the scheme and conduct corresponding experiment.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , , ,