Article ID Journal Published Year Pages File Type
6857010 Information Sciences 2018 27 Pages PDF
Abstract
This paper addresses the problem of reducing the required network load and computational power for the implementation of Set-Valued Observers (SVOs) in Networked Control System (NCS). Event- and self-triggered strategies for NCS, modeled as discrete-time Linear Parameter-Varying (LPV) systems, are studied by showing how the triggering condition can be selected. The methodology provided can be applied to determine when it is required to perform a full (“classical”) computation of the SVOs, while providing low-complexity state overbounds for the remaining time, at the expenses of temporarily reducing the estimation accuracy. As part of the procedure, an algorithm is provided to compute a suitable centrally symmetric polytope that allows to find hyper-parallelepiped and ellipsoidal overbounds to the exact set-valued state estimates calculated by the SVOs. By construction, the proposed triggering techniques do not influence the convergence of the SVOs, as at some subsequent time instants, set-valued estimates are computed using the conventional SVOs. Results are provided for the triggering frequency of the self-triggered strategy and two interesting cases: distributed systems when the dynamics of all nodes are equal up to a reordering of the matrix; and when the probability distribution of the parameters influencing the dynamics is known. The performance of the proposed algorithm is demonstrated in simulation by using a time-sensitive example.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , ,