Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6857547 | Information Sciences | 2016 | 18 Pages |
Abstract
In the past decades, different evolutionary optimization methodologies have been proposed by scholars and exploited by practitioners, in a wide range of applications. Each paradigm shows distinctive features, typical advantages, and characteristic disadvantages; however, one single problem is shared by almost all of them: the “lack of speciation”. While natural selection favors variations toward greater divergence, in artificial evolution candidate solutions do homologize. Many authors argued that promoting diversity would be beneficial in evolutionary optimization processes, and that it could help avoiding premature convergence on sub-optimal solutions. The paper surveys the research in this area up to mid 2010s, it re-orders and re-interprets different methodologies into a single framework, and proposes a novel three-axis taxonomy. Its goal is to provide the reader with a unifying view of the many contributions in this important corpus, allowing comparisons and informed choices. Characteristics of the different techniques are discussed, and similarities are highlighted; practical ways to measure and promote diversity are also suggested.
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Giovanni Squillero, Alberto Tonda,