Article ID Journal Published Year Pages File Type
6858629 Information Systems 2017 26 Pages PDF
Abstract
Previous compact data structures designed to store raster data work well when the raster dataset has few different values. Nevertheless, when the number of different values in the raster increases, their space consumption and search performance degrade. Our experiments show that our storage structure improves previous approaches in all aspects, especially when the number of different values is large, which is critical when applying over real datasets. Compared with classical methods for storing rasters, namely netCDF, our method competes in space and excels in access and query times.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,