Article ID Journal Published Year Pages File Type
6858644 Information Systems 2015 14 Pages PDF
Abstract
To achieve this goal, we use a specific kind of stochastic Petri nets that can capture arbitrary duration distributions. Thereby, we are able to achieve higher prediction accuracy than related approaches. Further, we evaluate the approach in comparison to state of the art approaches and show the potential of exploiting a so far untapped source of information: the elapsed time since the last observed event. Real-world case studies in the financial and logistics domain serve to illustrate and evaluate the approach presented.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,