Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6858931 | International Journal of Approximate Reasoning | 2016 | 27 Pages |
Abstract
Fault tree analysis (FTA) is a powerful technique that is widely used for evaluating system safety and reliability. It can be used to assess the effects of combinations of failures on system behaviour but is unable to capture sequence dependent dynamic behaviour. A number of extensions to fault trees have been proposed to overcome this limitation. Pandora, one such extension, introduces temporal gates and temporal laws to allow dynamic analysis of temporal fault trees (TFTs). It can be easily integrated in model-based design and analysis techniques. The quantitative evaluation of failure probability in Pandora TFTs is performed using exact probabilistic data about component failures. However, exact data can often be difficult to obtain. In this paper, we propose a method that combines expert elicitation and fuzzy set theory with Pandora TFTs to enable dynamic analysis of complex systems with limited or absent exact quantitative data. This gives Pandora the ability to perform quantitative analysis under uncertainty, which increases further its potential utility in the emerging field of model-based design and dependability analysis. The method has been demonstrated by applying it to a fault tolerant fuel distribution system of a ship, and the results are compared with the results obtained by other existing techniques.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Sohag Kabir, Martin Walker, Yiannis Papadopoulos, Erich RĂ¼de, Peter Securius,