Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6859685 | International Journal of Electrical Power & Energy Systems | 2015 | 14 Pages |
Abstract
Microgrids include distributed energy resources, controllable loads, and storage devices, and they can be classified into AC and DC types, depending on the characteristics of the supply voltage. In this paper, an optimal control strategy for a DC microgrid is proposed, and the strategy is aimed at minimizing the daily total energy costs. The DC micro grid can include non-dispatchable generation units (such as photovoltaic power generation) and dispatchable generation units, energy storage systems (batteries), and controllable/not controllable loads. The control strategy is based on a two-step procedure, i.e., (1) the implementation of one day-ahead scheduling and (2) a very short-time predictive control. The day-ahead scheduling is formulated using integer linear programming methodology and is aimed at achieving the optimal scheduling of controllable loads. The very short-time predictive control is based on the solution of a non-linear, multi-period, optimization problem and is aimed at achieving the real-time optimal charging/discharging profile of storage powers and the real-time optimal profile of powers of dispatchable generators thereby minimizing the cost of total daily energy. For both procedures, optimization models were formulated and solved, including technical constraints that guaranteed an adequate lifetime of the storage system. Case studies relative to a DC microgrid obtained by a modification of the actual structure of the electrical power plant of an Italian industrial facility were investigated in order to show the feasibility and the effectiveness of the proposed approach.
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
A. Bracale, P. Caramia, G. Carpinelli, E. Mancini, F. Mottola,