Article ID Journal Published Year Pages File Type
6859823 International Journal of Electrical Power & Energy Systems 2015 8 Pages PDF
Abstract
This paper proposes a hybrid computational framework based on Sequential Quadratic Programming (SQP) and Particle Swarm Optimization (PSO) to address the Combined Unit Commitment and Emission (CUCE) problem. By considering a model which includes both thermal generators and wind farms, the proposed hybrid computational framework can minimize the scheduling cost and greenhouse gases emission cost. The viability of the proposed hybrid technique is demonstrated using a set of numerical case studies. Moreover, comparisons are performed with other optimization algorithms. The simulation results show that our hybrid method is better in terms of the speed and accuracy. The main contribution of this paper is the development of a emission unit commitment model integrating with wind energy and combining the SQP and PSO methods to achieve faster and better performance optimization
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , , ,