Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6859973 | International Journal of Electrical Power & Energy Systems | 2015 | 17 Pages |
Abstract
This paper focuses primarily on implementation of optimal power flow (OPF) problem considering wind power. The stochastic nature of wind speed is modeled using two parameter Weibull probability density function. The economic aspect is examined in view of the system wide social cost, which includes additional costs like expected penalty cost and expected reserves cost to account for wind power generation imbalance. The optimization problem is solved using Gbest guided artificial bee colony optimization algorithm (GABC) and tested on IEEE 30 bus system. The simulation results obtained using proposed method are compared with other methods available in the literature for a case of conventional OPF as well as OPF incorporating stochastic wind. Subsequently an extensive simulation study is conducted to investigate the effect of wind power and different cost components on optimal dispatch and emission. Numerical simulations indicate that the operation cost of system and emission depends upon the transmission system bottlenecks and the intermittency of wind power generation.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Ranjit Roy, H.T. Jadhav,