Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6860418 | International Journal of Electrical Power & Energy Systems | 2014 | 10 Pages |
Abstract
The paper investigates the feasibility of applying Model Predictive Control (MPC) as a viable strategy to damp wide-area electromechanical oscillations in large-scale power systems. First a fully centralized MPC scheme is considered, and its performances are evaluated first in ideal conditions and then by considering state estimation errors and communication delays. This scheme is further extended into a distributed scheme with the aim of making it more viable for very large-scale or multi-area systems. Finally, a robust hierarchical multi-area MPC scheme is proposed, introducing a second layer of MPC based controllers at the level of individual power plants and transmission lines. Simulations are carried out using a 70-bus test system. The results reveal all three MPC schemes as viable solutions to supplement existing controllers in order to improve the system performance in terms of damping. The hierarchical scheme is the one combining the best performances in nominal conditions and the best robustness with respect to partial component failures and various modeling and measurement errors.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Da Wang, Mevludin Glavic, Louis Wehenkel,