| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 6860641 | International Journal of Electrical Power & Energy Systems | 2013 | 10 Pages |
Abstract
This article presents a novel teaching learning based optimization (TLBO) to solve short-term hydrothermal scheduling (HTS) problem considering nonlinearities like valve point loading effects of the thermal unit and prohibited discharge zone of water reservoir of the hydro plants. TLBO is a recently developed evolutionary algorithm based on two basic concept of education namely teaching phase and learning phase. In first phase, learners improve their knowledge or ability through the teaching methodology of teacher and in second part learners increase their knowledge by interactions among themselves. The algorithm does not require any algorithm-specific parameters which makes the algorithm robust. Numerical results for two sample test systems are presented to demonstrate the capabilities of the proposed TLBO approach to generate optimal solutions of HTS problem. To test the effectiveness, three different cases namely, quadratic cost without prohibited discharge zones; quadratic cost with prohibited discharge zones and valve point loading with prohibited discharge zones are considered. The comparison with other well established techniques demonstrates the superiority of the proposed algorithm.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Provas Kumar Roy,
