Article ID Journal Published Year Pages File Type
6860801 International Journal of Electrical Power & Energy Systems 2013 15 Pages PDF
Abstract
Estimation of power system harmonics and their elimination is an interdisciplinary area of interest for many researchers. This paper presents Variable Step Size Least Mean Square (VSS-LMS) approach for harmonics estimation and Shunt Active Power Filter (SAPF) with two-level Hysteresis Current Control (HCC) technique for their elimination in a three-phase distribution system. In the estimation process, the weight is updated using VSS-LMS algorithm. Harmonics components are estimated from the updated weights. In order to mitigate harmonics produced by the nonlinear load connected in a three-phase distribution system, SAPF with two-level HCC is proposed. A three-phase insulated gate bipolar transistor (IGBT) based current controlled voltage source inverter (CC VSI) with a dc bus capacitor is used as an active power filter. The first step is to calculate SAPF reference currents from the sensed nonlinear load currents by applying the synchronous detection method and then the reference currents are fed to the proposed controller for generation of switching signals. The nonlinear load consists of one three-phase and one single-phase diode rectifier feeding R-L load, so that the effectiveness of the two-level HCC scheme to compensate for unbalanced nonlinear load can be tested. Various simulation results are presented to verify the good behavior of the SAPF with proposed two levels HCC.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , ,