Article ID Journal Published Year Pages File Type
6861686 Knowledge-Based Systems 2018 14 Pages PDF
Abstract
Optimal design and control of industrially important chemical processes rely on dynamic optimization. However, because of the highly constrained, nonlinear, and sometimes discontinuous nature that is inherent in chemical processes, solving dynamic optimization problems (DOPs) is still a challenging task. Teaching-learning-based optimization (TLBO) is a relative new metaheuristic algorithm based on the philosophy of teaching and learning. In this paper, we propose an improved TLBO called quadratic interpolation based TLBO (QITLBO) for handling DOPs efficiently. In the QITLBO, two modifications, namely diversity enhanced teaching strategy and quadratic interpolation operator, are introduced into the basic TLBO. The diversity enhanced teaching strategy is employed to improve the exploration ability, and the quadratic interpolation operator is used to enhance the exploitation ability; therefore, the ensemble of these two components can establish a better balance between exploration and exploitation. To test the performance of the proposed method, QITLBO is applied to solve six chemical DOPs include three parameter estimation problems and three optimal control problems, and compared with eleven well-established metaheuristic algorithms. Computational results reveal that QITLBO has the best precision and reliability among the compared algorithms for most of the test problems.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , , ,