Article ID Journal Published Year Pages File Type
6862713 Knowledge-Based Systems 2013 10 Pages PDF
Abstract
Side information, like must-link (ML) and cannot-link (CL), has been widely used in single-view classification tasks. However, so far such information has never been applied in multi-view classification tasks. In many real world situations, data with multiple representations or views are frequently encountered, and most proposed algorithms for such learning situations require that all the multi-view data should be paired. Yet this requirement is difficult to satisfy in some settings and the multi-view data could be totally unpaired. In this paper, we propose an learning framework to design the multi-view classifiers by only employing the weak side information of cross-view must-links (CvML) and cross-view cannot-links (CvCL). The CvML and the CvCL generalize the traditional single-view must-link (SvML) and single-view cannot-link (SvCL), and to the best of our knowledge, are first definitely introduced and applied into the multi-view classification situations. Finally, we demonstrate the effectiveness of our method in our experiments.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,