Article ID Journal Published Year Pages File Type
6862742 Knowledge-Based Systems 2013 12 Pages PDF
Abstract
The problem of finding time series discord has attracted much attention recently due to its numerous applications and several algorithms have been suggested. However, most of them suffer from high computation cost and cannot satisfy the requirement of real applications. In this paper, we propose a novel discord discovery algorithm BitClusterDiscord which is based on bit representation clustering. Firstly, we use PAA (Piecewise Aggregate Approximation) bit serialization to segment time series, so as to capture the main variation characteristic of time series and avoid the influence of noise. Secondly, we present an improved K-Medoids clustering algorithm to merge several patterns with similar variation behaviors into a common cluster. Finally, based on bit representation clustering, we design two pruning strategies and propose an effective algorithm for time series discord discovery. Extensive experiments have demonstrated that the proposed approach can not only effectively find discord of time series, but also greatly improve the computational efficiency.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , , ,