Article ID Journal Published Year Pages File Type
6862752 Knowledge-Based Systems 2013 12 Pages PDF
Abstract
Data publishing is an easy and economic means for data sharing, but the privacy risk is a major concern in data publishing. Privacy preservation is a major task in data sharing for organizations like bureau of statistics, and hospitals. While a large number of data publishing models and methods have been proposed, their utility is of concern when a high privacy requirement is imposed. In this paper, we propose a new framework for privacy preserving data publishing. We cap the belief of an adversary inferring a sensitive value in a published data set to as high as that of an inference based on public knowledge. The semantic meaning is that when an adversary sees a record in a published data set, s/he will have a lower confidence that the record belongs to a victim than not. We design a method integrating sampling and generalization to implement the model. We compare the method with some state-of-the-art methods on privacy-preserving data publishing experimentally, our proposed method provides sound semantic protection of individuals in data and, provides higher data utility.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , , ,