Article ID Journal Published Year Pages File Type
6863491 Neural Networks 2012 8 Pages PDF
Abstract
Semi-supervised learning has attracted a great deal of attention in machine learning and data mining. In this paper, we have proposed a novel Laplacian Twin Support Vector Machine (called Lap-TSVM) for the semi-supervised classification problem, which can exploit the geometry information of the marginal distribution embedded in unlabeled data to construct a more reasonable classifier and be a useful extension of TSVM. Furthermore, by choosing appropriate parameters, Lap-TSVM degenerates to either TSVM or TBSVM. All experiments on synthetic and real data sets show that the Lap-TSVM's classifier combined by two nonparallel hyperplanes is superior to Lap-SVM and TSVM in both classification accuracy and computation time.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,