Article ID Journal Published Year Pages File Type
6867118 Robotics and Autonomous Systems 2018 9 Pages PDF
Abstract
This paper presents a new approach for predicting slippage associated with individual wheels in off-road mobile robots. More specifically, machine learning regression algorithms are trained considering proprioceptive sensing. This contribution is validated by using the MIT single-wheel testbed equipped with an MSL spare wheel. The combination of IMU-related and torque-related features outperforms the torque-related features only. Gaussian process regression results in a proper trade-off between accuracy and computation time. Another advantage of this algorithm is that it returns the variance associated with each prediction, which might be used for future route planning and control tasks. The paper also provides a comparison between machine learning regression and classification algorithms.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,