Article ID Journal Published Year Pages File Type
6867480 Robotics and Autonomous Systems 2015 22 Pages PDF
Abstract
RGB-D cameras like PrimeSense and Microsoft Kinect are popular sensors in the simultaneous localization and mapping researches on mobile robots because they can provide both vision and depth information. Most of the state-of-the-art RGB-D SLAM systems employ the Iterative Closest Point (ICP) algorithm to align point features, whose spatial positions are computed by the corresponding depth data of the sensors. However, the depth measurements of features are often disturbed by noise because visual features tend to lie at the margins of real objects. In order to reduce the estimation error, we propose a method that extracts and selects the features with reliable depth values, i.e. planar point features. The planar features can benefit the accuracy and robustness of traditional ICP, while holding a reasonable computation cost for real-time applications. An efficient RGB-D SLAM system based on planar features is also demonstrated, with trajectory and map results from open datasets and a physical robot in real-world experiments.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,