Article ID Journal Published Year Pages File Type
6867553 Robotics and Autonomous Systems 2015 12 Pages PDF
Abstract
Motion planning of rovers in rough terrains involves two parts of finding a safe path from an initial point to a goal point and also satisfying the path constraints (velocity, wheel torques, etc.) of the rover for traversing the path. In this paper, we propose a new motion planning algorithm on rough terrain for a 6 wheel rover with 10 DOF (degrees of freedom), by introducing a gradient function in the conventional potential field method. The new potential field function proposed consists of an attractive force, repulsive force, tangential force and a gradient force. The gradient force is a function of the roll, pitch and yaw angles of the rover at a particular location on the terrain. The roll, pitch and yaw angles are derived from the kinematic model of the rover. This additional force component ensures that the rover does not go over very high gradients and results in a safe path. Weights are assigned to the various components of the potential field function and the weights are optimized using genetic algorithms to get an optimal path that satisfies the path constraints via a cost function. The kinematic model of the rover is also derived that gives the wheel velocity ratio as it traverses different gradients. Quasi static force analysis ensures stability of the rover and prevents wheel slip. In order to compare different paths, four different objective functions are evaluated each considering energy, wheel slip, traction and length of the path. A comparison is also made between the conventional 2D potential field method and the newly proposed 3D potential field method. Simulation and experimental results show the usefulness of the new method for generating paths in rough terrains.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,