Article ID Journal Published Year Pages File Type
6867653 Robotics and Autonomous Systems 2015 13 Pages PDF
Abstract
This paper proposes an affordable mobile platform for pathological gait analysis. Gait spatio-temporal parameters are of great importance in clinical evaluation but often require expensive equipment and are limited to a small and controlled environment. The proposed system uses state-of-the art robotic tools, in contrast to their original use, for the development of a robust low-cost diagnostic decision-making tool. The mobile system, which is driven by a Kinect sensor, is able to (1) follow a patient at a constant distance on his own defined path, and (2) to estimate the gait spatio-temporal parameters. The Robust Tracking-Learning-Detection algorithm estimates the positions of the targets attached to the trunk and heels of the patient. Real-condition experimental validation including the corridor, occlusion cases, and illumination changes was performed. A gold standard stereophotogrammetric system was also used and showed good tracking of the patient and an accuracy in the stride length estimate of 2%. Finally, preliminary results showed an RMS error that was below 10°in the 3D lower-limb joint angle estimates during walking on a treadmill.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , , , , , ,