Article ID Journal Published Year Pages File Type
6867654 Robotics and Autonomous Systems 2015 29 Pages PDF
Abstract
In this paper, the method of speed control for 3D biped robots is addressed. First, the primary principle of speed control by regulation of input energy is studied, the feature of which is to regulate the speed and the step length synchronically. The method of Poincaré mapping is used to prove the stability of speed control in the common range. Second, a method of speed control for an 18 DOFs bipedal 3D robot, which is characterized by the two-point-foot, is proposed. The method is developed on the basis of the 3D walking pattern proposed previously, with the new function of speed regulation being added in. The simulations show that the performances of regular walking, acceleration, and deceleration are effective and stable, and therefore verify the feasibility of the proposed method. Furthermore, some walking features, such as the walking efficiency and lateral control, are demonstrated.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,