Article ID Journal Published Year Pages File Type
6868579 Computational Statistics & Data Analysis 2018 14 Pages PDF
Abstract
Both global and multiple testing procedures have previously been proposed to untangle the correlation structures among high-dimensional data. In this article, we extend the results of both tests to learn the correlations of the factor-adjusted residuals in an approximate factor model, which can be used to simultaneously detect the highly matched pairs of stocks in finance. The factor-adjusted residuals are not observed and estimated using the method of principal components. We theoretically investigate the effects of estimating the factor-adjusted residuals on the subsequent global and multiple testing procedures. Furthermore, we demonstrate that the correlation structure of the factor-adjusted residuals can be recovered if appropriate thresholds are used in the proposed multiple testing procedure. Extensive simulation studies and a real data analysis are presented in which the proposed method is applied to select stock pairs in China's stock market.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , , ,