Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6869557 | Computational Statistics & Data Analysis | 2015 | 23 Pages |
Abstract
Equating is an important step in the process of collecting, analyzing, and reporting test scores in any program of assessment. Methods of equating utilize functions to transform scores on two or more versions of a test, so that they can be compared and used interchangeably. In common practice, traditional methods of equating use either parametric or semi-parametric models where, apart from the test scores themselves, no additional information is used to estimate the equating transformation function. A flexible Bayesian nonparametric model for test equating which allows the use of covariates in the estimation of the score distribution functions that lead to the equating transformation is proposed. A major feature of this approach is that the complete shape of the scores distribution may change as a function of the covariates. As a consequence, the form of the equating transformation can change according to covariate values. Applications of the proposed model to real and simulated data are discussed and compared to other current methods of equating.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Computational Theory and Mathematics
Authors
Jorge González, Andrés F. Barrientos, Fernando A. Quintana,