Article ID Journal Published Year Pages File Type
6869745 Computational Statistics & Data Analysis 2014 26 Pages PDF
Abstract
The bivariate Sinh-Elliptical (BSE) distribution is a generalization of the well-known Rieck's (1989) Sinh-Normal distribution that is quite useful in Birnbaum-Saunders (BS) regression model. The main aim of this paper is to define the BSE distribution and discuss some of its properties, such as marginal and conditional distributions and moments. In addition, the asymptotic properties of method of moments estimators are studied, extending some existing theoretical results in the literature. These results are obtained by using some known properties of the bivariate elliptical distribution. This development can be viewed as a follow-up to the recent work on bivariate Birnbaum-Saunders distribution by Kundu et al. (2010) towards some applications in the regression setup. The measurement error models are also introduced as part of the application of the results developed here. Finally, numerical examples using both simulated and real data are analyzed, illustrating the usefulness of the proposed methodology.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , ,