Article ID Journal Published Year Pages File Type
6869854 Computational Statistics & Data Analysis 2014 17 Pages PDF
Abstract
Joint models for longitudinal and survival data are often used to investigate the association between longitudinal data and survival data in many studies. A common assumption for joint models is that random effects are distributed as a fully parametric distribution such as multivariate normal distribution. The fully parametric distribution assumption of random effects is relaxed by specifying a centered Dirichlet Process Mixture Model (CDPMM) for a general distribution of random effects because of some good properties of CDPMM such as inducing zero mean and continuous probability distribution of random effects. A computationally feasible Bayesian case-deletion diagnostic based on the ϕ-divergence is proposed to identify the potential influential cases in the joint models. Several simulation studies and a real example are used to illustrate our proposed methodologies.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , ,