Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6870355 | Computational Statistics & Data Analysis | 2014 | 11 Pages |
Abstract
Given a random sample of observations, mixtures of normal densities are often used to estimate the unknown continuous distribution from which the data come. The use of this semi-parametric framework is proposed for testing symmetry about an unknown value. More precisely, it is shown how the null hypothesis of symmetry may be formulated in terms of a normal mixture model, with weights about the center of symmetry constrained to be equal one another. The resulting model is nested in a more general unconstrained one, with the same number of mixture components and free weights. Therefore, after having maximized the constrained and unconstrained log-likelihoods, by means of the Expectation-Maximization algorithm, symmetry is tested against skewness through a likelihood ratio statistic with p-value computed by using a parametric bootstrap method. The behavior of this mixture-based test is studied through a Monte Carlo simulation, where the proposed test is compared with the traditional one, based on the third standardized moment, and with the non-parametric triples test. An illustrative example is also given which is based on real data.
Related Topics
Physical Sciences and Engineering
Computer Science
Computational Theory and Mathematics
Authors
Silvia Bacci, Francesco Bartolucci,