Article ID Journal Published Year Pages File Type
6870466 Computational Statistics & Data Analysis 2014 18 Pages PDF
Abstract
In the context of nonparametric Bayesian estimation a Markov chain Monte Carlo algorithm is devised and implemented to sample from the posterior distribution of the drift function of a continuously or discretely observed one-dimensional diffusion. The drift is modeled by a scaled linear combination of basis functions with a Gaussian prior on the coefficients. The scaling parameter is equipped with a partially conjugate prior. The number of basis functions in the drift is equipped with a prior distribution as well. For continuous data, a reversible jump Markov chain algorithm enables the exploration of the posterior over models of varying dimension. Subsequently, it is explained how data-augmentation can be used to extend the algorithm to deal with diffusions observed discretely in time. Some examples illustrate that the method can give satisfactory results. In these examples a comparison is made with another existing method as well.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , ,