Article ID Journal Published Year Pages File Type
6871115 Discrete Applied Mathematics 2018 8 Pages PDF
Abstract
Several well-studied classes of graphs admit structural characterizations via proper 2-cutsets which lead to polynomial-time recognition algorithms. The algorithms so far obtained for those recognition problems do not guarantee linear-time complexity. The bottleneck to those algorithms is the Ω(nm)-time complexity to fully decompose by proper 2-cutsets a graph with n vertices and m edges. In the present work, we investigate the 3-connected components of a graph and propose the use of the SPQR-tree data structure to obtain a fully decomposed graph in linear time. As a consequence, we show that the recognition of chordless graphs and of graphs that do not contain a propeller as a subgraph can be done in linear time, answering questions in the existing literature.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , , ,