Article ID Journal Published Year Pages File Type
6872 Biomaterials 2012 7 Pages PDF
Abstract

Cell adhesion molecules govern leukocyte-endothelial cell (EC) interactions that are essential in regulating leukocyte recruitment, adhesion, and transmigration in areas of inflammation. In this paper, we synthesized hydrogel matrices modified with antibodies against vascular cell adhesion molecule-1 (VCAM1) and endothelial leukocyte adhesion molecule-1 (E-Selectin) to mimic leukocyte-EC interactions. Adhesion of human umbilical vein ECs to polyvinyl alcohol (PVA) hydrogels was examined as a function of the relative antibody ratio (anti-VCAM1:anti-E-Selectin) and substrate elasticity. Variation of PVA backbone methacrylation was used to affect hydrogel matrix stiffness, ranging from 130 to 720 kPa. Greater EC adhesion was observed on hydrogels presenting 1:1 anti-VCAM1:anti-E-Selectin than on gels presenting either arginine-glycine-asparagine (RGD) peptide, anti-VCAM1, or anti-E-Selectin alone. Engineered cell adhesion - based on complementing the EC surface presentation - may be used to increase the strength of EC-matrix interactions. Hydrogels with tunable and synergistic adhesion may be useful in vascular remodeling.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , ,