Article ID Journal Published Year Pages File Type
6872351 Discrete Applied Mathematics 2014 6 Pages PDF
Abstract
Given an ordered partition Π={P1,P2,…,Pt} of the vertex set V of a connected graph G=(V,E), the partition representation of a vertex v∈V with respect to the partition Π is the vector r(v|Π)=(d(v,P1),d(v,P2),…,d(v,Pt)), where d(v,Pi) represents the distance between the vertex v and the set Pi. A partition Π of V is a resolving partition of G if different vertices of G have different partition representations, i.e., for every pair of vertices u,v∈V, r(u|Π)≠r(v|Π). The partition dimension of G is the minimum number of sets in any resolving partition of G. In this paper we obtain several tight bounds on the partition dimension of trees.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , ,