| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 6873129 | Future Generation Computer Systems | 2018 | 10 Pages |
Abstract
New architectural patterns (e.g. microservices), the massive adoption of Linux containers (e.g. Docker containers), and improvements in key features of Cloud computing such as auto-scaling, have helped developers to decouple complex and monolithic systems into smaller stateless services. In turn, Cloud providers have introduced serverless computing, where applications can be defined as a workflow of event-triggered functions. However, serverless services, such as AWS Lambda, impose serious restrictions for these applications (e.g. using a predefined set of programming languages or difficulting the installation and deployment of external libraries). This paper addresses such issues by introducing a framework and a methodology to create Serverless Container-aware ARchitectures (SCAR). The SCAR framework can be used to create highly-parallel event-driven serverless applications that run on customized runtime environments defined as Docker images on top of AWS Lambda. This paper describes the architecture of SCAR together with the cache-based optimizations applied to minimize cost, exemplified on a massive image processing use case. The results show that, by means of SCAR, AWS Lambda becomes a convenient platform for High Throughput Computing, specially for highly-parallel bursty workloads of short stateless jobs.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Computational Theory and Mathematics
Authors
Alfonso Pérez, Germán Moltó, Miguel Caballer, Amanda Calatrava,
