Article ID Journal Published Year Pages File Type
6873154 Future Generation Computer Systems 2018 17 Pages PDF
Abstract
Cloud-based content distribution networks (CDNs) consist of multiple servers that consume large amounts of energy. However, with the development of a cloud-based software defined network (SDN), a new paradigm of the virtual content distribution network (vCDN) has emerged. In an emerging cloud-based vCDN environment, the development and adjustment of vCDN components has become easier with the aid of SDN technology. This transformation provides the opportunity to use vCDNs to reduce energy consumption by adjusting the scale of the vCDN components. Energy costs can be reduced by deactivating the commercial servers carrying the software components of the vCDN, such as replica servers, the firewall or routers. In addition, the CDN requires a high service level agreement (SLA) to respond to clients' requests, potentially consuming large amounts of energy. In this research, we focus on the issue of the energy savings of a CDN in a cloud computing environment while maintaining a high quality of service (QoS). We propose an approximate algorithm termed max flow forecast (MFF) to determine the number of software components in the vCDN. Additionally, we use a real traffic trace from a website to assess our algorithm. The experimental results show that MFF can produce a larger energy reduction than the existing algorithms for an identical SLA. We fully justify our research as a good example for the emerging cloud.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , , ,