Article ID Journal Published Year Pages File Type
6873637 Future Generation Computer Systems 2014 7 Pages PDF
Abstract
As supercomputers scale to 1000 PFlop/s over the next decade, investigating the performance of parallel applications at scale on future architectures and the performance impact of different architecture choices for high-performance computing (HPC) hardware/software co-design is crucial. This paper summarizes recent efforts in designing and implementing a novel HPC hardware/software co-design toolkit. The presented Extreme-scale Simulator (xSim) permits running an HPC application in a controlled environment with millions of concurrent execution threads while observing its performance in a simulated extreme-scale HPC system using architectural models and virtual timing. This paper demonstrates the capabilities and usefulness of the xSim performance investigation toolkit, such as its scalability to 227 simulated Message Passing Interface (MPI) ranks on 960 real processor cores, the capability to evaluate the performance of different MPI collective communication algorithms, and the ability to evaluate the performance of a basic Monte Carlo application with different architectural parameters.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
,