Article ID Journal Published Year Pages File Type
6874549 Journal of Computational Science 2016 22 Pages PDF
Abstract
Monte Carlo simulations are used to calculate the solubility of natural gas components in ionic liquids (ILs) and Selexol, which is a mixture of poly(ethylene glycol) dimethyl ethers. The solubility of the pure gases carbon dioxide (CO2), methane (CH4), ethane (C2H6), and sulfur dioxide (SO2) in the ILs 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Cnmim][Tf2N], n = 4, 6), 1-ethyl-3-methylimidazolium diethylphosphate ([emim][dep]), and Selexol (CH3O[CH2CH2O]nCH3, n = 4, 6) have been computed at 313.15 K and several pressures. The gas solubility trend observed in the experiments and simulations is: SO2 > CO2 > C2H6 > CH4. Overall, the Monte Carlo simulation results are in quantitative agreement with existing experimental data. Molecular simulation is an excellent tool to predict gas solubilities in solvents and may be used as a screening tool to navigate through the large number of theoretically possible ILs.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , , , , , , , ,