Article ID Journal Published Year Pages File Type
6874617 Journal of Computational Science 2015 11 Pages PDF
Abstract
Cerebrovascular diseases such as brain aneurysms are a primary cause of adult disability. The flow dynamics in brain arteries, both during periods of rest and increased activity, are known to be a major factor in the risk of aneurysm formation and rupture. The precise relation is however still an open field of investigation. We present an automated ensemble simulation method for modelling cerebrovascular blood flow under a range of flow regimes. By automatically constructing and performing an ensemble of multiscale simulations, where we unidirectionally couple a 1D solver with a 3D lattice-Boltzmann code, we are able to model the blood flow in a patient artery over a range of flow regimes. We apply the method to a model of a middle cerebral artery, and find that this approach helps us to fine-tune our modelling techniques, and opens up new ways to investigate cerebrovascular flow properties.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , , , , , , , ,