Article ID Journal Published Year Pages File Type
6874628 Journal of Computational Science 2015 8 Pages PDF
Abstract
Interest in discovering combinations of genetic markers from case-control studies, such as Genome Wide Association Studies (GWAS), that are strongly associated to diseases has increased in recent years. Detecting epistasis, i.e. interactions among k markers (k ≥ 2), is an important but time consuming operation since statistical computations have to be performed for each k-tuple of measured markers. Efficient exhaustive methods have been proposed for k = 2, but exhaustive third-order analyses are thought to be impractical due to the cubic number of triples to be computed. Thus, most previous approaches apply heuristics to accelerate the analysis by discarding certain triples in advance. Unfortunately, these tools can fail to detect interesting interactions. We present GPU3SNP, a fast GPU-accelerated tool to exhaustively search for interactions among all marker-triples of a given case-control dataset. Our tool is able to analyze an input dataset with tens of thousands of markers in reasonable time thanks to two efficient CUDA kernels and efficient workload distribution techniques. For instance, a dataset consisting of 50,000 markers measured from 1000 individuals can be analyzed in less than 22 h on a single compute node with 4 NVIDIA GTX Titan boards. Source code is available at: http://sourceforge.net/projects/gpu3snp/.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, ,