Article ID Journal Published Year Pages File Type
6875410 Theoretical Computer Science 2018 12 Pages PDF
Abstract
For MCC on trees we show that the problem is basically equivalent to Minimum Cut on Trees, thus MCC is not approximable within factor 1.36−ε, it is fixed-parameter tractable and it admits a poly-kernel (when the parameter is the number of colorful components). Moreover, we show that MCC, while it is polynomial time solvable on paths, it is NP-hard even for graphs with constant distance to disjoint paths number. Then we consider the parameterized complexity of MEC when parameterized by the number k of edges in the transitive closure of a solution (the graph obtained by removing edges so that it is partitioned in colorful connected components). We give a fixed-parameter algorithm for MEC parameterized by k and, when the input graph is a tree, we give a poly-kernel.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, ,